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Lisa says that the probability that the coin will fall heads is 50%. She might just mean that she personally happens to believe, with a credence of 50%, that the coin will fall heads. In that case, she is making a statement about her subjective probability. However, she might well mean something stronger. She might mean that the situation is such that, objectively, there is a 50% probability of heads. This certainly looks like an assertion that can at least occasionally be made, usefully and meaningfully; and it is not equivalent to saying something about Lisa’s private belief state. However, explaining what is meant by such talk of objective probabilities – explaining what sort of thing objective probabilities are – has proved a very elusive philosophical goal. These three essays represent a stab at that goal. A theory is developed that seeks to explain what objective probabilities are; I call it a subjectivist theory for reasons that will become clear.


The approach taken here draws on the tradition started by David Lewis (1980) and on the Brian Skyrms’ work (1980). This tradition seeks to analyze objective probability in a way that would make objective probabilities supervene on the pattern of events in a world, a condition known as Humean Supervenience. Thus no problematic ontological commitments will be made, in contrast to approaches such as Mellor’s (1971, 1995), propensity interpretations (e.g. Popper 1959; Gillies 1973) or the hypothetical frequency interpretation (von Mises 1939). On the other hand, this tradition also differs from the actual frequency interpretation (e.g. [ref*** forthcoming Mind paper]): the chance-making patterns are not simply identified with actual frequencies of some type of events. Although typically objective probabilities will be similar to actual frequencies, especially if the relevant classes of events are large, there can be discrepancies.


The motivation for this “third-way” tradition (Hoefer 1999) is that it avoids the difficulties that have long been known to plague both propensity interpretations and actual frequency interpretations. I will not recap those difficulties here.


Essay I uncovers some shortcomings of Lewis’ theory of chance. This sets the stage for Essay II, where I will develop my own theory of chance (and the related notions of objective probability and propensity), a theory which overcomes the drawbacks of Lewis’ theory and carries some important other advantages as well. Essay III examines the implications of my theory of chance for the analysis of laws. It is shown that the connection between chance and reasonable credence established in Essay II entails quite strong constrains on what can count as a successful explication of laws.

ESSAY I

Shortcomings of Lewis’ theory of chance
David Lewis original theory (1980) was suffering from what Lewis himself dubbed the problem of undermining. For some time, this problem seemed nearly mortal. However, recently the problem of undermining was solved by Lewis and collaborators (Lewis 1994; Thau 1994; Hall 1994). This development meant a new spring for third-way approaches to understanding objective probability. Several ercent contributions have examined Lewis’ theory of chance and his solution to the problem of undermining (e.g. Strevens 1995; Hoefer 1997; Black 1998; Bigelow, Collins and Pargetter 1993; ***conference paper)

1. Two features of Lewis’ account

In this section I will briefly recap two central features of Lewis’ theory: the New Principal Principle and his best-system analysis of laws. This preliminary will enable my criticisms in the following three sections to run more smoothly.

The New Principal Principle

Lewis takes it as a given that any theory of chance must contain some explanation of how chance is related to reasonable credence. The general idea is that if all you know is that a certain chance event has a chance x of producing a certain outcome, then you should set your credence in that outcome equal to x. This idea ought then to be strengthened so that you should set your credence equal to x even if you know some things in addition to the chance of the outcome––things that, intuitively, aren’t relevant to what the outcome will be. Without such a strengthening, the link between chance and reasonable credence would be too weak, since in practice we always have additional information. A chance-concept that failed to support such a stronger link would not be able to play the role we normally assign to chance, because that role includes constraining what is reasonable credence in many real-life circumstances. That much, I think, is fairly uncontroversial.


Lewis’ original attempt to forge a link between chance and reasonable credence (the Old Principal Principle) was a failure. As Lewis himself was the first to point out, it suffered from what came to be known as the problem of undermining (Lewis 1980). Lewis and collaborators (Lewis 1994; Thau 1994; Hall 1994) later solved that problem by putting a New Principal Principle in place of its faulty predecessor. Let Htw be a proposition that completely describes the history of a world w up to and including time t. (By “history” we mean all facts about the spatiotemporal distribution of local qualities.) Let Tw be the complete set of history-to-chance conditionals that hold in w. (The complete set of history-to-chance conditional is a set of propositions that specify exactly what chances would follow from any given initial segment of history.) Let Ptw be the chance distribution at time t in world w. Then the New Principal Principle (Lewis 1994, p. 487) states that
:

(NP)
Cr(A | HtwTw) = Pwt(A | Tw).

This is supposed to hold for any reasonable credence function Cr. Lewis does not give an exact definition of what a reasonable credence function is, but it is required to satisfy stronger constraints than just being rational in the minimal sense of not being inconsistent or violating the axioms of probability theory. Basically, being reasonable in the sense intended here amounts to being logically and probabilistically coherent together with believing in the principle of induction. At least that is the sense in which I will later make use of the notion of reasonable credence function in my analysis of chance, and it seems to agree with what Lewis meant (cp. Lewis 1980, pp. 110-1). The point I will make in this section does not depend on whether one can find a neat characterization of what is a reasonable credence function. 

The best-system analysis

According to Lewis (1994, p. 480), the laws of nature are the regularities
 that are theorems of the best deductive system. The best deductive system is the system that (1) is true in what it says about history (ignoring statements about chance); (2) never says that A without and also saying that A never had any chance of not coming about; and (3) strikes as good a balance between strength, fit and simplicity as satisfying (1) and (2) will admit.


The first condition simply says that only true propositions can be laws of nature. The reason why propositions about chances are excepted is that Lewis intends to use this definition of laws to say something informative about what chances are. If you want to define chances by saying that the chance in a world are what the laws of that world say they are then to explicitly require that the best system is true about what it says about chances would make the explanation circular: we wouldn’t understand what laws were unless we had understood what chances are, and we wouldn’t understand what chances are unless we already knew what true laws about chances were. By requiring only that the system is true in what it says about non-chance, Lewis avoids circularity and can therefore potentially use this definition to give a non-trivial analysis of chance.

The second condition just means that the best systems isn’t “in the business of guessing the outcomes of what, by [its] own lights, are chance events” (1994, p. 480).

The third condition is more problematic. It requires that we select, from all the systems that satisfy conditions (1) and (2), the one system that has the best balance between strength, fit and simplicity. This presupposes that we have a metric for strength, a metric for fit, a metric for simplicity, and a way of determining the optimal combination of magnitudes along these three dimensions. As regards strength and simplicity, Lewis does not offer us much by way of explication. Strength is measured by how much a system says either about what will happen or about what the chances will be when certain kinds of situations arise. The “how much” here boils down to a notion of informativness, presumably to be understood in some intuitive pre-theoretic sense.

Regarding simplicity, Lewis says: “simple systems are those that come out formally simple when formulated in terms of perfectly natural properties. Then, sad to say, it’s useless (though true) to say that the natural properties are the ones that figure in laws.” (Lewis 1986, p. 124). So again, we have to fall back on some unspecified intuitive criteria to assess the simplicity of a system. Although it would be nice to know more explicitly what strength and simplicity means, I think it would be unfair to reject Lewis’ theory of chance on the grounds that it invokes these notions that are somewhat unclear. 

When it comes to fit, Lewis does offer a precise definition: the fit of a system to a world is equal to the chance that the system gives to that world’s total history. I will return to criticize this definition of fit in a later section, but the argument I want to pursue in the next section does not depend on that criticism.

2. A counterexample to the New Principal Principle?

Consider a world w that contains nothing except 1000 chance events. I will talk of these chance events as if they were coin tosses (but as I will assume, for simplicity, that they do not have any relevant internal structure it might be better to think of them as being some low-level physical events—say homogenous particles that pop into existence, one after another, lasting for either one or two seconds before disappearing.) Suppose approximately half of these coin tosses are heads. Let’s think about what the chances are, on Lewis’ account, of getting heads on toss number 996.

The chances in a world according to Lewis, remember, are what the best system of laws says they are. The best system is one that is true about what it says about history and that strikes the right balance between simplicity, strength and fit. Applying this to the world under consideration, we can get a best system containing a probabilistic law saying that the chance of heads on any toss is 50%.

This is so, of course, only provided the sequence of the 1000 coin tosses is sufficiently random-looking. If the sequence were H, T, H, T, H, … then the best system would presumably be a one containing the deterministic law “The tosses alternate between heads and tails”; possibly it would also contain the initial condition “The first toss is H.” In such a world there would not be any non-trivial chances. But let’s assume there is no pattern in the sequence of outcomes. Then the best system would presumably be one having a probabilistic law specifying a nontrivial chance of getting a specific outcome. In order for the fit of the best system to be good, the chance that it specifies for getting heads has to be close to the relative frequency of heads in w. Moreover, since a law saying that the chances of heads are equal to the chances of tails seems simpler than a law specifying some other proportion (such as a 50.2% chance of heads), there is presumably some interval around .5 such that if the relative frequency of heads is within this interval then the chance of heads is exactly 50%. To be specific, let’s suppose that provided the frequency of heads is in the interval [.495, .505] then the best system of laws says that the chance of heads is 50%.

Suppose that at time t the first 995 of the tosses have taken place, that the outcomes look random, and that there were 500 heads and 495 tails. Given this information you can infer that the chance of heads on the 996th toss is 50%. This is so because whatever the outcomes of the remaining five tosses, the relative frequency of heads will be in the interval which makes the best system one which says that the chance is 50%, and on Lewis’ analysis the chances are defined to be what the best system says they are. At time t you thus know both Htw and Tw. By the New Principal Principle, you should therefore set your subjective credence of heads on the next toss equal to 50%.
 But this seems wrong. If forced to bet (at equal odds) on either heads or tails, it does not seem unreasonable to prefer to bet on heads. After all, there have been more heads (500) than tails (495), and you don’t have any other relevant information. If it is indeed not unreasonable to have this epistemic preference for heads, then we have a counterexample to the New Principal Principle.

I can see two ways in which Lewis might try to respond to this. Either he could insist that it is unreasonable to prefer to bet on heads, or he could respond by stipulating that contrary to what I assumed, the chance of heads in w is not exactly 50%. Let’s consider these possible replies in turn.

Suppose Lewis says that it’s unreasonable to prefer heads. Then we have intuition against intuition. Lewis thinks it is unreasonable to prefer heads in these circumstances; I don’t. The reader may consult her own intuitions to determine who is right. I would like to adduce the following argument in favor of my position: Even if, as Lewis thinks, our world in fact contains nothing but spatiotemporal distributions of local qualities, one could argue that there nevertheless are possible worlds in which there are entities––such as irreducible propensities––that do not thus supervene. But then it would seem we could never be certain that there are no propensities in our world. Hence, after observing the first 995 tosses, you would want to consider the hypothesis that underlying these outcomes there is a definite propensity for the coin to fall heads. It is presumably possible for this propensity to have any value between zero and one. Thus there are four possibilities to which at lest some reasonable credence functions may assign a non-zero credence: (H1) There is no propensity in w; (H2) There is a propensity and it is equal to 50%; (H3) There is a propensity and it is less than 50%; and (H4) There is a propensity and it is greater than 50%. The prior credence (before conditionalizing on Htw and Tw) of (H1) and (H2) need not concern us here. All we need to know is that on some reasonable credence function, (H3) and (H4) have a non-zero prior credence, and (because of the symmetry of the setup) any propensity equal to 50+x% can have the same prior credence as a propensity equal to 50–x%.
 A reasonable credence function will assign a credence of heads on the 996th toss that is equal to:

Cr(Heads on 996th toss)

= Cr(H1)*0.5 + Cr(H2)*0.5 + Cr(H3)*(0.5–e) + Cr(H4)*(0.5+e),

where 
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 Now, obtaining 500 heads and 495 tails is more likely given that the propensity of heads is greater than 50% than given that it is less than 50%. Therefore, conditionalizing on the information that the first 995 tosses contained 500 heads, the posterior credence that the propensity of heads is greater than 50% is greater than the posterior credence that the propensity is less than 50%. Consequently, conditional on there being a propensity and on history up to time t, it need not be unreasonable to think that the propensity is more likely greater than 50% than less than 50%. Hence,

Cr(Heads on 996th toss | Htw)

= Cr(H1 | Htw)*0.5 + Cr(H2 | Htw)*0.5 + Cr(H3 | Htw)*(0.5–e) + Cr(H4 | Htw)*(0.5+e)

> 50%

Thus there is at lest some reasonable credence function that assigns a greater than 50% credence to heads in this example, contrary to what the New Principal Principle implies.


In intuitive terms, it seems incorrect to think that you could deduce the chances in a world by just looking at the spatiotemporal distribution of local qualities. You would (at least) also need to assume that there were no other features of the world that could influence what the chances are but that don’t supervene on the local qualities. Propensities would be one case in point; God deciding what the odds should be, another. Note that this argument does not presuppose that there actually are propensities or a divine being or some other metaphysical arrangement that determines the chances; only that there could be, and that some reasonable credence function assigns a non-zero credence to this possibility.

The second way Lewis could respond to my example is by stipulating that contrary to what I assumed, the chances of heads are not exactly 50%. Rather, Lewis could for example say that if the relative frequency of heads is f then the chances of heads are f as well, neither more nor less. Setting the chance equal to the frequency would entail that in a finite world, no initial segment that left out some subsequent chance events would imply the exact value of the chances in that world. This would block the inference from the number of heads and tails among the first 995 tosses to the chance of the next toss falling heads, and thus my counterexample would be blocked.

The problem with setting the chances of heads equal to something different than 50% is that it makes it difficult to see what role simplicity is supposed to play in the equation. Simplicity was one of the factors that we were supposed to consider when deciding what the best system is, but if simplifying by rounding off when going from frequency to chance is ruled out completely then the consideration of simplicity has apparently to be suspended in the present example. This leaves one wondering what the simplicity desideratum is supposed to mean. It is not as if the notion of simplicity is crystal clear to begin with, and it gets much worse if we would have to tolerate ad hoc interventions where simplicity considerations become inapplicable simply in order to rescue NP from counterexamples. This is not the way forward.


Finally, any residual reluctance to accept my counterexample might disappear when considering that a very simple cure is available. I suggest we simply insert the assumption of Humean Supervenience (call it HS) on the right hand side of NP, thus obtaining a Revised Principal Principle:

(RPP)
Cr(A | HwtTw&HS) = Pwt(A | Tw).

It is easy to see how this takes care of the case presented above.

3. A problem with Lewis’ best-system analysis

In my brief review of Lewis’ best-system analysis of law I noted that I had a criticism about the way he defines the notion of fit. I will now explain what this criticism is.


The fit of a system to a world, remember, was to be equal to the chance that that system would give to that world. While this definition is exact (in contrast to his definitions of strength and simplicity), it leads to erroneous results when combined with Lewis’ account of chance. More specifically, the definition doesn’t work for worlds that are infinite. Suppose a world contains some denumerably infinite class of chance events that have chances that individually are no greater than (
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. The actual world may well be such a world. Then any system that implies all these chances would have the same fit: zero
. It would follow that all these systems would have an equally good (i.e. equally bad) fit. So there would be systems that were equally simple and equally strong (talked about the same events and chance situations) while differing widely in what they said about chances. One theory might say of all the chance events that they had a 30% chance of happening (given a certain setup), while another theory might say that the chance was 70%. And these two theories would count as equally good, since they would be equal on all three relevant dimensions (strength, fit, and simplicity). The intuitively correct theory would presumably count as worse, since it would stipulate a greater variety of chances and thus lose out in terms of simplicity. There would thus be many systems that would be tied for best (neither of which would be the intuitively best theory). Since Lewis’ best system analysis says that there are no laws if two or more systems are tied for best (1994, p. 497), this would imply that there can be no laws in our universe if it turns out to contain infinitely many nontrivial chance events. But that is of course wrong.

One way for Lewis to respond to this problem
 would be by withdrawing his exact definition of fit and treat it instead in the same manner as he does simplicity and strength: by relying on our intuitive criteria for fit. While this move would block erroneous consequences for worlds that are infinite, it does not appear to me a very satisfactory solution. I am not convinced that I have an intuitive notion of fit as regards a theory of chance applied to an infinite world. I’m not sure I have any notion of fit, relevant to the present context, other than the notion according to which fit equals the conditional chance of a history given a set of propositions about chance––and as we saw, that notion doesn’t cut it. It may turn out that there is no way of defining fit that doesn’t appeal to the notion of law.

4. Chance and determinism

At the beginning of his 1980 paper, Lewis lists a number of cases where he says we have “very firm and definite” opinions about how chances are related to reasonable credence. It is clear that Lewis thinks that these opinions have to be respected by any plausible theory of chance. The first of the cases he describes is one which illustrates the principle that, lacking evidence to the contrary, one should set one’s subjective credence of proposition equal to the chance of that proposition:

A certain coin is scheduled to be tossed at noon today. You are sure that this chosen coin is fair: it has a 50% chance of falling heads and a 50% chance of falling tails. You have no other relevant information. Consider the proposition that the coin tossed at noon today falls heads. To what degree would you now believe that proposition?


Answer. 50%, of course. (Lewis 1980, p. 84)

Let’s grant that this is the right answer and that we should indeed demand of any theory of chance that it gives that answer. Interestingly, however, Lewis feels the need to qualify the answer by commenting that a coin toss probably is an indeterministic process:

Is it reasonable to think of coin-tossing as a genuine chance process, given present-day scientific knowledge? I think so: consider, for instance, the air resistance depends partly on the chance making and breaking chemical bonds between the coin and the air molecules it encounters. What is less clear is that the toss could be designed so that you could reasonably be sure that the chance of heads is 50% exactly. If you doubt that such a toss could be designed, you may substitute an example involving radioactive decay. (Ibid. pp. 84-5)

Why should that matter, though? It is clear why Lewis thinks it matters: he thinks the theory of chance that he goes on to develop in his paper is incompatible with non-trivial chances in a deterministic world: “If our universe is deterministic there are no chances in it, save chances of one and zero.” (p. 120). Radioactive decay, if quantum physics is indeterministic, would be one type of event for which there would be non-trivial chances on Lewis’ account. And Lewis seems right in thinking that the case of radioactive decay is one instance where we should set our subjective credence equal to the objective chance, in the absence of any other relevant information.

Yet the example he gave was about coin-tossing, not radioactive decay. Coin-tossing is perhaps the most paradigmatic of all chance events. If a theory of chance doesn’t get coin-tossing right, then we would feel very tempted to conclude that there is something amiss. Has Lewis at the outset of his paper formulated a fatal counterexample to his own account?

Lewis says he thinks that coin-tossing is a genuine chance process. He might be right. It might be the case that how a coin falls is heavily influenced by the exact chemical interactions that happen to take place between the air and the coin. It might be that these interactions are essentially quantum mechanical. And it might be that quantum mechanics is indeterministic. But that, I want to claim, is beside the point. The coin toss would have a fifty-fifty chance of falling heads even if one of these assumptions failed. Or at least, that is what I think our pretheoretic intuitions about chance would say. I suggest that the people who lived before the era of quantum physics shared most of our intuitions about the concept of chance. They too would presumably consider a coin toss a paradigmatic chance event; so would the Bohmians, who think our world is deterministic; likewise many other people today, even were they to be told that the chemical interactions between the air the coin (and other quantum phenomena) are not strong enough to have much impact.

We are talking pretheoretic intuitions here, as they play key role in determining whether an explication is satisfactory. The intention behind Lewis’ example was to illustrate one constraint on theories of chance imposed by our pretheoretic uses of the concept: it has to respect a Principal Principle, connecting chance to reasonable credence. I think the example inadvertently also illustrates another constraint, or at least a very strong desideratum. Namely, that since the concept of chance has been in use long before quantum mechanics and independently of any assumptions of whether coin tosses are indeterministic, it seems that our pretheoretic intuitions also require that there can be a 50% chance of heads even in a deterministic universe. Any theory of chance that fails to uphold this basic intuition is has a serious drawback and should probably be rejected. (Especially if there is an attractive alternative that overcomes this drawback, as I shall argue there is.)


So Lewis theory, as it stands, does not provide non-trivial chances if our universe happens to be deterministic. It therefore cannot explain, for example, what we mean when we say of a certain coin that it has a 50% chance of falling heads when tossed by Lisa in a standard way, in contrast to another, slightly bent, coin that only has a 38% chance of heads. The conclusion has to be that Lewis’ theory of chance is either incorrect or at least incomplete. When Lewis says: “To the question how chances can be reconciled with determinism … my answer is: it can’t be done.” (p. 118), it would seem as if what he says implies the former alternative—that his theory is incorrect. If the theory cannot be extended to deal with chances in a deterministic universe then it fails in one important respect: it can’t explain some very basic commonsense assertions about Lisa’s coin tosses.

I will argue in Essay II, however, that there is a way to develop and modify Lewis’ theory so that we can handle non-trivial chances in a deterministic universe. Lewis himself actually makes some remarks indicating how this could be done:

If a determinist says that a tossed coin is fair, and has an equal chance of falling heads or tails, he does not mean what I mean when he speaks of chance. Then what does he mean? … That question has been sufficiently answered in the writings of Richard Jeffrey and Brian Skyrms on objectified and resilient credence. (p. 120)

Lewis calls the chances defined by Jeffrey and Skyrms counterfeit chances. Why are they not real chances? According to Lewis, for two related reasons (p. 121): (a) they will be relative to partitions
, and (because of that) (b) they are not the sort of thing we would want to find in our fundamental physical theories.


The point about relativity aside, why should we expect that all chances are to be found in our fundamental physical theories? So many other perfectly respectable concepts are not part of fundamental physical theories—“tooth brush”, “ganglion cell”, “genes”, “interest rate”… I see no reason why chance could not be another such macro-level concept. It seems fairer to call chances chances. When we need to distinguish the sort of chances Lewis is referring to we can call them fundamental physical chances.


This leaves us with the fact that chances that work in a deterministic world would be relative to partitions (of logical space). But that doesn’t mean that they can’t exist, or that they can’t be objective. If it did then there wouldn’t be any objective chances in indeterministic worlds either. For chances there––at least chances of the kind that Lewis advocates––are relative to partitions too. (Lewis calls them history-theory partitions. A history-theory partition is the propositions HtwTw, which can be thought of as an equivalence class of possible worlds that have the same history-to-chance conditionals as world w and the same history as w up to time t.) I’m sure there are ways of making chances dependent on partitions such as would render one’s explication inadequate, but partition-relativity per se is not necessarily a problem.

5. Conclusion

I have argued the following three points: First, the New Principal Principle is vulnerable to counterexamples; it can give false verdicts even in worlds where Humean Supervenience holds. I introduced a Revised Principal Principle that remedies the problem. Second, Lewis’ best-system analysis of laws doesn’t work because the notion of fit breaks down in worlds that are infinite (quite possibly including the actual world). Maybe it is possible to construct another best-system analysis that avoids this difficulty; the immediate response must at any rate be to withdraw Lewis’ definition. Thirdly, and most importantly for Essay II, any adequate theory of chance should give nontrivial chances also for deterministic worlds. Lewis’ reasons for thinking otherwise were rejected. Since Lewis’ theory of chance does not satisfy this basic success criterion, we need a theory that does better in this respect. That’s what Essay II will attempt to provide.

ESSAY II

A theory of objective probability, chance, and propensity
1. Objective probability

Subjective probability––credence––can vary from person to person. Not only that, but it can vary even between persons who share the same information; and it can do so even if they are all reasonable. This is so because different people have different credence functions, and there are many credence functions that are reasonable. 


For a credence function to be reasonable it is not enough that it satisfies the axioms of probability. I mean by “reasonable” something stronger than that: something a bit like “sane”. In order to be reasonable, you have to be able to learn from experience, at more or less the normal rate. Reasonable credence functions thus respect the principle of induction. If you are not fairly confident that the sun will rise tomorrow then you are presumably not reasonable in my book. I say presumably, for there are be circumstances in which you could reasonably doubt the sun will rise tomorrow. For example, if you have made some astounding astrophysical discovery that indicates that the sun will go extinct later today. Or you might have been raised in a dark room and never told much about the sun. However, all the people I know would be unreasonable if they did not believe that the sun is going to rise tomorrow.

Objective probabilities, by contrast, do not depend on what anybody happens to believe––that’s what makes them objective. But moreover, there are restrictions on the ways in which reasonable people can disagree about objective probabilities. Objective probability is connected to reasonable credence. Objective probability should thus be explicated in such a way that they (a) do not depend on what anybody happens to think, and (b) make some version of the Principal Principle come out true.

Lewis treats “objective probability” and “chance” as synonymous. For my purposes it will be useful to make a distinction. I will define objective probability first, as the more generic notion. Later I will say what kind of objective probabilities are chances. The difference has to do with laws. Basically, chances are objective probabilities that asserted by laws. For now, we can forget about laws and explore just how far we can get with objective probabilities using only the notion of reasonable credence functions.

Let D be a set of true propositions, and let A be a proposition describing some possible event. It might be that every reasonable credence function agrees about the credence x of A conditional on D. If that is the case then we will say that A has the objective probability x in D. I will call D the domain, and I will write this objective probability “PD(A) = x”.

This explication satisfies both (a) and (b). It satisfies (a) because no matter what people actually think, or even if there are no people at all, it will still be the case that PD(A) = x if and only if Cr(A|D) = x. For that equivalence is required to hold for all reasonable credence functions Cr, not only those that represent some actual person’s beliefs (and it is not required to hold for any unreasonable credence function, even if somebody happens to believe it).

The explication satisfies (b) because it clearly supports the principle that for all reasonable credence functions, Cr(A|D&“PD(A) = x”) = x. In fact, we have the stronger principle that for any reasonable credence function Cr, and for any subset 
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Cr(A|D’&“There is some superset D of D’ such that PD(A) = x”) = x

We can call this the “Objective Probability Principal Principle”. OPPP can be seen as an application of the Total Evidence Requirement, the principle that one should use all relevant information available.
 If you know that there is some D such that 
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and PD(A) = x for any reasonable credence function, then, provided your credence function is reasonable, you know that your conditional credence of A given D (whatever D is) is x. Moreover, PD(A) = x implies that D is a set of true propositions. It would seem to be completely in the spirit of the Total Evidence Requirement to require that you base your credence in A on D rather than merely a subset D’ of D.


A third feature that objective probability should have is that (c) an ascription of an objective probability to an event says something substantive about the world, something that you need an empirical investigation to discover; you can’t deduce a priori what the objective probabilities are. The explication satisfies (c). PD(A) is an objective chance of A only if D is a set of true propositions, and you can’t generally know whether that is so except by acquiring empirical evidence.


To sum up this section and for ease of reference, I have proposed the following explication:

Definition of Objective Probability. Let D be a set of true propositions, and let A be a proposition describing some possible event. Then there is an objective probability x of A in the domain D, PD(A) = x, if and only if: for any reasonable credence function Cr, Cr(A|D&HS) = x.

HS stands for Humean Supervenience; it was tacitly presupposed in the preceding discussion but needs be explicitly expressed in the formal definition, unless we hold that there are no possible worlds where Humean Supervenience fails.

2. Chance

2.1 Introduction

Lisa is about to flip a fair coin: what is the chance of it falling heads?


If we want to answer this question based on the definition of objective probability, we are faced with an essential ambiguity. The question doesn’t explicitly specify any domain. We could say, “Relative to the domain D={The coin falls heads.} (supposing the coin does in fact fall heads) there is an objective probability equal to one of it falling heads. Relative to other domains there might be other objective probabilities.” While that is correct, it is not satisfactory answer. There seem to be too many potential objective probabilities around, and not all of them are equally important or fundamental. I want to define chance so that they are objective probabilities of a special kind: the kind of objective probability you could cite as an answer to the opening question of this section. Perhaps the question, together with shared background assumptions, implicitly specifies a preferred domain. What it asks for is the objective probability relative to this domain.


One of the main reasons why Lewis’ analysis of chance is not satisfactory is that it does not give any non-trivial chances in a deterministic world. By defining the domains of chances in the right way, we will get an analysis of chances that does give interesting chances even in deterministic worlds. This is necessary to give a good answer to the question about Lisa’s coin toss.


Before getting to my actual analysis of chance it is instructive to consider one way in which one could try to define them which looks promising at first but doesn’t work. For the moment, let’s ignore the requirement of non-trivial chances in deterministic worlds. If the approach I will explain now didn’t fail on other grounds, it could be modified to deal chances in deterministic worlds using the technique I will introduce later for the benefit of my actual analysis.

2.2 A failed attempt

Suppose we define chances as those objective probabilities whose domains are maximal: their domains are, in a certain sense, as big as possible. If we are looking for the chance of A, we would obviously have to exclude from the domain A. (Or ¬A, depending on whether A or ¬A it true; the one that is false would already be excluded since domains only contain true propositions.) We would also have to require that the domain doesn’t include any set of propositions that logically implies A (or ¬A). Otherwise the chance would be trivially equal to one (or zero). Moreover, if e is the event about which A is speaking, we would have to exclude from the domain any proposition that is about some causal consequence of e. For example, if P is a proposition stating that Lisa has observed the coin falling heads, then if P were included in the domain, the corresponding objective probability (if there were one) would presumably be equal to one (or extremely close to one). Such propositions have to be excluded, and we also have to require that the domain does not contain a set of propositions that logically imply any such proposition P that speaks about causal consequences of e. But apart from these things that we have excluded, the domain of a chance would include all other true propositions; that is the sense in which it would be maximal. 

In many cases, this definition would give the right results. If you didn’t know about the outcome of Lisa’s coin toss, and you did not know anything about the causal consequences of it, but you knew everything else, then it would seem reasonable for you to set your credence of heads equal to 50% (at least if we ignore the problem of non-trivial chances in a deterministic world). For the domain you are now conditionalizing upon includes all the facts about the coin (it is symmetric); about the outcomes of other tosses with the same coin (roughly half of which landed heads); about the outcomes of tosses with similar coins (also roughly half of which landed heads); about the setup (Lisa tossed the coin high up in the air giving it lots of spin). Given all this, 50% is certainly the reasonable estimate of its probability of falling heads.

In some cases, this approach will not generate any chances. One type of such cases is if there are too few events of the relevant kind. Consider for example a world containing only two chance-events, e1 and e2, and in which there are no other factors relevant to the chances than the outcomes of these two events. (The events could thus presumably not be coin tosses, for such features as their mass distributions would be relevant; rather, the events might be instances of some sort of quantum phenomenon.) Let A be a proposition saying that e1 has a particular outcome. If we are asking for the chance of A, we have to consider a domain that is very skinny indeed: the only piece of relevant information it contains is the outcome of e2. The objective probability relative to that domain might well be non-existent, implying that there is no chance of A––i.e. not a zero chance, but no well-defined chance at all. Another type of case where chances would be absent is if we ask for the chance of a proposition that embraces too much. For example, suppose we have a world with 1000 chance-events, and that A is a proposition specifying an outcome for each of these events. A domain for A would have to omit any proposition about the outcome of any of these chance-events. Quite possibly this would lead to too little remaining in the domain for there to be a well-define chance of A relative to it. 

Does the failure to supply chances in these two (related) cases represent a defect of the suggested analysis? I think on the contrary it can be seen as a strength. In both cases, A expresses a statement about a very large part of a world. A is (nearly) saying how the world turned out. To ask for a chance of A would in effect be to ask for the chance that the world should turn out to be the way it did. Such a request could well be regarded as nonsensical.
 What could it possibly mean to say that there was such-and-such a chance for a world to turn out the say it did? Nothing, one might plausibly claim. But then it is a merit of the analysis that it has as a consequence that there are no such chances. 

So what, then, is the catch? (The reader might want to see if she can find it before continuing reading.)


The problem arises when the chance event takes place too early in the world. It can then happen that nearly everything else is a causal consequence of the outcome of the coin toss. For example, consider a world that consists of little except 1000 coin tosses. About 500 of these are heads and about 500 tails, in a random-looking sequence, so intuitively speaking we want to say that there is a 50% chance of heads on a coin flip in that world. But suppose that at the beginning of the world, an arrangement is made to the effect that after the first coin toss has happened, the 999 other tosses will only take place if the outcome of the first toss was heads; and suppose that the first toss does indeed fall heads. Intuitively, in this would there would still be the fact that the first toss has a 50% chance of falling heads. After all, it’s just one of these 1000 tosses out of which roughly 500 fall heads, and there are no other relevant facts. However, on the suggested definition, the domain of the chance of the proposition that the first toss gives heads has to exclude all information about all the coin tosses that take place in the world, because they are all either the first toss or causal consequences of the first toss. So the domain would be more or less empty; it would not contain enough information for every reasonable credence function to give the same credence (50%) to the proposition that the first toss is heads conditional on that domain. Close but no cigar.

Attempts to rescue the definition along the line of just ruling out certain types of causal consequences from the domain do not appear promising as far as I can see. We therefore have to reject it and look for a different way of analyzing chance.

2.3 Outline of the solution

The analysis of chance that I propose invokes the notion of law. In this respect, my thinking agrees with Lewis’. I will say something like this: chances are those objective probabilities that follow from the laws of nature. But I will develop this idea in such a way that there can be interesting chances in deterministic worlds.


A natural way of adapting the analysis to deterministic worlds would be to apply a “fuzz-filter” to the world before settling the chances. That is to say, we could consider a course-grained description of the world and look at what the chances would be relative to that. Suppose for instance that the laws are given by a best-system analysis, and that we have a world that is completely described by the set of all position-momentum vectors v for each particle at each point of time. Then, what this suggestion comes down to is this: instead of finding the best theory for {v}(as in Lewis’ proposal), we find the best theory for {v + e}, where e is a noise term, a Gaussian random variable. The basic idea here is the same as in statistical mechanics: to ignore some of the information contained in a complete description of the system by fuzzing out some of the details, which can be done by adding a noise term or, equivalently, by considering only a somewhat coarse-grained partition of phase space.

However, we have to keep our aim in mind. Non-trivial chances for distributions of positions and momenta of deterministic systems of particles may represent an improvement over Lewis’ account, but we want more than that: we want chances for such macro-level phenomena as coin flips, lotteries, roulette games, dice rolls, fortune wheels, card deals etc. Possibly we might even want to find chances for such propositions as that a certain person will be killed in a traffic accident in the coming year, or that unprotected sex will result in pregnancy. I have to say that my intuitions are much less clear when it comes to the existence of this latter kind of chances. But the gaming-type situations, at least, provide paradigmatic examples of chances. They must be successfully handled by our theory of chance. Will fuzzing the total history of a world before selecting the best theory for that world allow us to have the right non-trivial chances for a coin flip, for example?

One might be tempted to think not, because it could seem to presuppose a strong form of reductionism. If statements about coin tosses are not reducible to statements about position-momentum vectors of elementary particles then how would chanciness of the latter imply chanciness of the former? This scruple is misplaced, however. We need not presuppose that Carnap’s project is feasible, that we can actually define macro-level terms in some vocabulary of fundamental micro-level terms. The complexity of the relation between micro- and macro-level terms might be such as to make it utterly infeasible for human brains to carry out the reduction. But that doesn’t matter. What matters is that macro-level phenomena supervene on micro-level phenomena. This is guaranteed by Humean Supervenience, which (following Lewis) we can presuppose in the present discussion. Given Humean Supervenience, it follows that if we define chance for micro-level phenomena (particle trajectories) we will thereby implicitly also have defined chances for macro-level phenomena (coin tosses and such).

A related prima facie difficulty is the following. If the relation between the micro-level description and the macro-level description is so complicated that we can never hope to express it, then Humean Supervenience doesn’t seem to help. For it is required by the account of chance we are aiming for not only that there are macro-level chances, but also that these macro-level chances are knowable. Not just knowable in principle, but knowable in practice (with some reasonable degree of certitude) in many ordinary situations. People of normal intelligence, possessing commonly available information, can often be fairly certain that a given coin toss has about a 50% chance of falling heads. But if the reductive relation between the macro-level phenomenon and the underlying micro-level chances is too complex to ever be expressed by humans, how could we ever know what the macro-level chances are?

I think this difficulty too can be overcome. We don’t need to be able to give an explicit analysis of the reductive relation in order to be able to know something about the macro-level chances on this account. We may have an intuitive grasp of the relation without being able to spell it out. And that intuitive grasp might be enough to enable us to draw certain conclusions. Moreover, in practice the inference from the micro-level to the macro-level would not need to be made in anyway. In practice we are not given a micro-level description of a coin toss and asked to estimate the probability of heads. Instead, we are given macro-level descriptions of certain relevant facts––the coin is approximately symmetric, it has fallen heads approximately 50% of the time in the past etc.––and from such facts we infer that the chance of heads is probably about 50%. Micro-level chances, while they would be constitutive of macro-level chances, would not need to enter into our deliberations about macro-level chances. We can live our lives at the macro-level, and only in moments of philosophical reflection need we remind ourselves that there are some (unknown) micro-level chances upon which the marco-level chances supervene.

There is, however, another reason why I think this approach doesn’t work. We want a typical coin toss to have about a 50% chance of a heads outcome. But there is no guarantee that the suggested explication will give us that. For all I know, a typical coin toss may not be sufficiently sensitive to small changes in initial conditions to yield this chance. Maybe when you toss a coin and it falls heads, it would have fallen heads even if the initial condition of the molecules in the coin, in your body and in the air surrounding you had been slightly different. We simply don’t know whether that is the case. (My guess is that it depends a lot on how high you toss the coin, how much angular momentum you give it, and the manner in which you catch it. A rather low toss with little rotation could well be independent of the exact initial conditions, even though the toss would intuitively count as fair.) Since we would want to say that the chance of heads could be 50% even if the outcome were robust under slight variations of the initial conditions, it follows that the explication is not entirely satisfactory.

As I said, when we reason about chances in everyday life we don’t take a detour down to the micro-level. If that is so then why not have a theory of macro-level chances that operates entirely at the macro-level, rather than starting at the micro-level and hoping that fuzzing the micro-level description of the world will result in a new set of micro-level chances that in turn give rise to suitable macro-level chances? That is, in order to find the chances for macro-level phenomena such as coin tosses, let’s do this: Start with the whole history of a world. As before, we then disregard certain facts about this history before deciding what is the best theory for it. But this time, instead of simply disregarding detailed information about the exact positions and momenta of individual particles, we choose another set of facts to disregard. And we characterize which facts that are to be considered by such macro-level statements as “In the past, the coin has fallen heads 262 times and tails 254 times.”, or “The coin looks just like an ordinary dime.”. Given a set of facts expressed by such macro-level statements, we can then use the laws relative to those facts to define what the chances are. One can think of the laws as given by a best-system analysis, in which case the “laws” that are relevant for a given type of chance are the ones given by the best system of the set of facts in question. I do not, however, wish to commit myself to a best-system analysis of laws. All that is assumed here is that the laws supervene on the total history of a world.
 Essay III will examine in more detail how chances are determined by the laws and what constraints are imposed on possible explications of probabilistic laws by the requirement that the chances they speak about support the right connections to reasonable credence.

Let’s now discuss exactly what propositions are to be included in the domains of chances. In order to do this, I will introduce the notion of a field of knowledge. 

2.4 Fields of knowledge

By a “field of knowledge” I mean something rather vague––roughly: the set of all true propositions in some large distinctive area of human inquiry. For instance, when discussing “the chance of an outcome of a coin flip”, the field of knowledge will be that of true propositions about readily observable macroscopic phenomena, including all the factors that gamblers are able to manipulate. We say that a coin toss is fair if it has a 50% chance of heads and a 50% of tails in this field of knowledge. This field of knowledge, by the way, is the same as the one involved when we are talking about chances in lotteries, dice, card deals, and roulette wheels.

There are other fields of knowledge. For instance, the physical field of knowledge which includes all true propositions about facts of fundamental physical phenomena. (This is identical to the set all facts––the total field of knowledge––if Humean Supervenience holds). If quantum mechanics is correct (and complete) then the chances relative to this field of knowledge is what quantum mechanics says they are. Thus there will be a certain chance that a given radium atom will decay within the coming year: the probability given by quantum physics.

It is possible for the same proposition to have chances in several different fields of knowledge. There might be a gambler’s chance of a coin falling heads, and also the physical chance given by the Schroedinger equation applied to a state description of the world at the time when the coin toss begins. These two chances might or might not have the same value. If the world is deterministic, they will certainly not have the same value!

A limitation to the possibility of one proposition having chances in several fields of knowledge is that the proposition might be too vague. A proposition such as the one saying that a certain coin toss will fall heads is a perfectly appropriate chance-bearer in the gambler’s field of knowledge, but what does this proposition say in the vocabulary of fundamental physics? Exactly at what picosecond does the coin toss begin? There will be a zone of vagueness in this and other respects. If all physical chances within that zone of vagueness are approximately the same then we may say that the coin landing heads has both a gambler’s chance and a physical chance. If not, we would say that the proposition has not been sufficiently specified to have a physical chance.

Are there any other fields of knowledge beside the one relevant for discussing coin tosses, dice and such and the one relevant for fundamental physics? Statistical physics would seem to require a field of its own. This field would contain all true propositions about a system’s state space together with all true propositions about the facts about which cell the system occupies at different times in some suitably coarse-grained partition of the state space.

Any more fields of knowledge? It is really up to us to define a field whenever we find it useful. One type of chance that has been discussed quite a lot in the philosophical literature is the one that might be implied by phrases such as “the chance that Mr. John Smith will get cancer within the next year”. I am suspicious of purported chances of this sort. It seems to me that while there may well be objective probabilities for this event relative to various domains, none of these objective probabilities qualifies as a chance. For the domains are not maximal. Suppose that all you know is that Mr. John Smith is a male British citizen and that the incidence of cancer among male British citizens is 0.6% per year. Then you should presumably assign the credence 0.6% to the proposition (A:) Mr. John Smith gets cancer during the next year. Let’s suppose that every reasonable credence function would concur. This means that relative to the domain containing precisely this information there is an objective probability of A, namely 0.6%. But let’s say you add the information that Mr. Smith is 81 years old together with some diverse background knowledge about the health problems of octogenarians. Then your credence in A would change. We could define a new domain that includes this information. Let’s assume that there still is an objective probability of A relative to this new domain. (That is possible although not very likely, considering that there seems to be a large scope for reasonable credence functions to disagree about the precise evidential import of the new information). The new objective probability is much bigger than the original, maybe 5%. But we haven’t yet reached the border of any naturally delineated field of knowledge. Next you learn that Mr. Smith has been a chain smoker for all his adult life. The objective probability (if there is one) goes up to 7%. There seems little prospect that the objective probabilities will ever stabilize as we keep expanding the domain. They don’t even stabilize when the domain grows to encompass what we called the gambler’s field of knowledge, for we can continue to add information about the condition of the cells in Smith’s body, and this will tend to influence the probability. Eventually the process will bottom out, when we reach the domain of the physical field of knowledge if no sooner. At last we have found the chance we were looking for. Or have we? The chance relative to the physical field of knowledge is surely not what we are referring to when we speak of the chance of John Smith getting cancer within a year. If the world is deterministic then this chance is most likely zero. Zero chance of getting cancer––no reason to quit smoking then!

While, as I said, I am suspicious of that type of chances, I don’t rule them out categorically. It could well be that there are some useful levels between the gambler’s field of knowledge and the statistical mechanic’s field of knowledge. For instance, maybe there is an actuarial field of knowledge. This would include all information to which insurance companies have access. The actuary’s task could be understood as finding chances embedded in this field of knowledge. The field could be redefined over time––and thus a new set of chances would become relevant––for example if insurance companies were given access to results from genetic screening. This underlines the fact that a field of knowledge is something we define, usefulness being the main criterion for what counts as a good stipulation.

I should say something briefly about one other purported type of chance before we move on. This is the type that we seemingly find referred to in a phrase such as “the chance of a male driver in London dying in a car crash within the next year…”.

Now, you could define a field of knowledge appropriate to this sort of statement––the road safety agency field of knowledge, maybe. A more natural way of interpreting the locution, however, would be to read it as simply a statement about the relative frequency of persons who die in a car crash next year in the population of male drivers in London; the “chance” is just this relative frequency, or proportion. There is an objective probability corresponding to (and numerically equal to) this relative frequency. The domain of this objective probability is that of a proposition (ot its deductive closure) saying what fraction f of male drivers in London will die in a car crash next year. Relative to this domain, all reasonable credence functions would assign the same credence to the proposition “x, a randomly selected element from the class of all male drivers in London, dies in a car crash next year.”––namely, f. There is no need to suppose that there is a chance in addition to this objective probability and the corresponding relative frequency.

2.5 The definition of chance

We can now use the notion of a field of knowledge to define chance. The idea is that chances are those objective probabilities whose domains include laws of a given field of knowledge. If laws are understood in terms of best-system analysis, this means that the domains of chances include the propositions constituting the best system of their field of knowledge. In addition to this, the domains of chances need to contain something else: “initial conditions”. Chances of a proposition can vary over time. So when we are considering the chance of a proposition A at a time t in a given field, we include in its domain not only the laws of that field, but also all propositions in that field that are about history up to t.
 (A proposition is “about” the history up to t iff the truth value of the proposition is determined by that history segment; in other words, if the proposition supervenes by that history-segment.) Nothing else is included in the domain of a chance. This gives us the following definition:

Definition of chance. Let A be a proposition about some event, and let FOK be a field of knowledge in world w, and let L be the set of laws for FOK. Then x is the chance in FOK of A at time t, Cht(A) = x,  if and only if L is non-empty and there is an objective probability of A, PD(A) = x, whose domain D consists of L and all propositions in FOK that supervene on the history of w up to and including t.

2.6 An illustration

To see how this definition works, let’s consider how it solves the problem of Lisa’s coin toss. Let’s say we look at the situation at a time t when Lisa has just flipped the coin up in the air. Let A be the proposition that the coin will fall heads. Let FOK be the gambler’s field of knowledge, as described above. The set of laws L for FOK will presumably be one that contains propositions to the effect that coins that have a roughly uniform mass-distribution, and that fall heads on approximately half of the times they are actually tossed, have a 50% chance of falling heads when tossed in the standard way. FOK will also contain the proposition that Lisa’s coin is such a coin and that it has just been subjected to a standard toss. The set D defined as the union of L and all propositions of FOK that are about history up to time t will thus include all these pieces of evidence. That means that there is an objective probability PD(A) = 50%, since all reasonable credence functions would presumably assign a credence of 50% to the proposition that Lisa’s coin will fall heads conditional on this evidence. It follows from the definition that there is a 50% of A in the gambler’s field of knowledge, and this, I submit, is the chance that the question at the opening of section 2.1 was asking for. (There may also be other chances of A, for instance a quantum mechanical chance in the physical field of knowledge. The way the question was phrased, however, indicates that this was not the chance at issue.)

2.7 Chance satisfies an adapted Principal Principle

It is easy to adapt the Revised Principal Principle to fit the definition of chance presented here. Using the notation introduced above and making all indices explicit, we get the following Principal Principle which we can call the Chance-Credence Principle:

(CCP)
Cr(A | HFOKwtLFOKw&HS) = ChFOKwt(A).

It is straightforward to show that CCP follows from the definitions. Suppose that x = ChFOKwt(A). By the definition of chance, this implies that there is an objective probability PD(A) = x in w such that its domain D consists of the laws of the field of knowledge FOK in w (i.e. LFOKw), plus all propositions about FOK that only concern the history of w up to t (i.e. HFOKwt). From the definition of objective probability it follows that for every reasonable credence function Cr, Cr(A|D&HS) = x. Spelling out D then directly gives the left-hand side of the equality. 


Lewis has to assume the Principal Principle as an independent postulate and he provides no argument why the chances he defines should be expected to satisfy it. By contrast, the analysis proposed here provides a straightforward justification for the Principal Principle. I see this as an important advantage.

2.8 The role of reasonable credence in the analysis of chance

The definition of chance presented above invokes the notion of a reasonable credence function. We have just seen how a strong constraint (CCP) on reasonable credence follows from this analysis of chance. What we thus have is an interrelation between chance and reasonable credence: either concept can be used to clarify the other. 


In section 1, I said that by “reasonable” I meant something akin to “sane”. This is a stronger notion than rationality in the minimal sense of satisfying the axioms of probability theory. In order to be reasonable, you also have to be able to learn from experience at more or less the normal rate. For example, it would be unreasonable for any person I know not to assign a high credence to the proposition that the sun will rise tomorrow, although there could be persons, having very different information, for whom it would be reasonable to doubt that prediction. We might thus say that reasonable credence functions satisfy the axioms of probability theory and involve a belief in the principle of induction. Needless to say, I’m not going to provide a non-circular definition of exactly what inductive inferences are warranted by the principle of induction. It would, indeed, be unreasonable to expect that.


In addition to being coherent and conforming with the principle of induction, there is one more constraint on reasonable credence functions as I understand them. I assume, as it were, that the persons having perfectly reasonable credence functions do not have any computational limitations. In other words, the reasonable credence functions are what otherwise reasonable people would believe if they were logically omniscient. It is convenient to idealize away from computational constraints because as far as chances are concerned, what is relevant is the evidential relations between propositions together with the empirical truth about the world––not limited to what any actual human has enough time or memory to take into account when making up her mind.

What happens if the world is such that there are few interesting propositions A and domains such that every reasonable credence function conditionalized on that domain assigns the same credence to A? I would say tough luck; in such a world there are few interesting objective probabilities (and consequently few interesting chances). On the other hand, nature may be chance-friendly: it may abound with interesting propositions and domains that satisfy the definitions of objective probability and chance. It is an empirical question how rich in chances the actual world is. As a matter of fact, it seems that there are quite a few chances around––in quantum physics, statistical physics, lotteries and dice games, for instance. In all these contexts, people tend to agree what the probabilities are, and they are presumably reasonable to do so. This strongly indicates, but does not entail, that there is a chance corresponding to the consensus probability.

One reason why there isn’t an entailment is that just because lots of reasonable people agree doesn’t mean that all reasonable people would. Not all reasonable credence functions need be represented in a given population. It is quite possible that there are more reasonable credence functions than there are actual people, and it is also possible for many people to share the same credence function (perhaps because of social conditioning). But the definition of objective probability requires that every reasonable credence function deliver the same conditional probability. (Notwithstanding, if very many reasonable people agree, especially if these people are very dissimilar and come from widely different backgrounds, this can give good grounds for suspecting that all reasonable credence functions concur.)

Another reason why the entailment fails is that objective probabilities were defined in terms of conditional credences, so when a lot of reasonable people assign the same credence to A, they will often do so for somewhat different reasons. Each person will have conditionalized on her own idiosyncratic set of background knowledge. When that is so, then it does not follow that there is a domain D such that all these reasonable people would give the same credence to A if their knowledge were D. (However, if it were the case that all these people who assign the same credence to A would continue to do so even after pooling all their information, that would be an indication that there is an objective probability relative to the domain D consisting of the union set of their individual knowledge sets.)

6. Propensity

Objective probabilities and chances as they have been defined here are properties possessed by propositions or ordered pairs of propositions and domains. Sometimes it seems useful to attribute probabilities to physical entities. A polonium atom, for example, might possess a certain probability of decaying within a given time interval; a fair coin might possess a probability of 50% of falling heads when tossed in the standard manner. I will call this kind of probability propensity, and we shall see how they can be accommodated within the framework developed in this essay. Propensities are probabilities possessed by physical objects. It should be emphasized that “propensity” as the word is used here does not imply anything metaphysical or irreducible. We will continue to focus on worlds where Humean Supervenience holds and it will be argued that there is a straightforward way in which the account of chance given above can be extended to explain how propensities can exist in such worlds.


The idea is very simple. Remember that the domains of chances (of a proposition A at a time t) contained the laws in a given field together with all information about history up to time t within that field. In some cases it might so happen that not all of history up t is relevant to the credence that reasonable credence functions assign to A given the laws. If the only part of the history that is relevant are propositions about some particular physical entity e, then e has a propensity equal to the chance in question. That is, I propose the following:

Definition of propensity. Let e be a physical entity. Let A be a proposition about some event. Let  FOK be a field of knowledge and let L be the set of laws in FOK. Then e has a propensity x at time t of making A true, Prpe(A) = x, if and only if there is an objective probability of A, PD(A) = x, whose domain D consists of L and those propositions in FOK which supervene on the history of w up to and including t that are only about e.


Let’s see how this definition operates. Let e be the nucleus of a polonium218 atom. Let A be the proposition saying that e will decay within 3.05 minutes. The chance in the physical field of knowledge of A is 50%, assuming quantum physics is correct. We thus have a physical entity, a proposition, and a field of knowledge; we can define a domain D consisting of the laws of physics together with the complete truth about e (up to time t). Conditional on this information, every reasonable credence function would presumably assign the same credence (50%) to A. Thus all the conditions for a propensity to exist are satisfied: e possesses a propensity of 50% of decaying within 3.05 minutes. 


We might also speak loosely of a fair coin having a propensity of 50% (in the gambler’s field of knowledge) of falling heads. Strictly speaking, this propensity belongs not to the coin itself but to a system that includes the coin, the tossing mechanism, and a sufficient chunk of the surrounding environment. This chunk would be quite big. If the coin toss takes one second to complete, then in order for the system to have a strictly well-defined propensity to produce a heads outcome (at the time t when the toss commences), it would have to have a spatial extension at time t of at least a sphere of radius one second times c (light speed in meters per second). Alternatively, if we want to talk of a property of the coin itself, we can say that it has the disposition that, if tossed in a fair way, it will have yield a 50% propensity (to the system consisting of the coin and its surroundings) of a heads outcome. The propensity would belong to the larger system, but the disposition to generate such a propensity would belong to the coin itself. 


When asking for what propensities a physical object has, we have to select the appropriate field of knowledge in which to find the objective probability upon which the propensity is piggybacking. A normal coin has a disposition to yield a 50% propensity to fall heads if tossed in a standard way. This is true whether or not the world is indeterministic. The gambler’s field of knowledge is a suitable one in which to look for propensities relating to devices such as coins, roulette wheels, dice etc. The physical field of knowledge would be inappropriate. If the world is deterministic then a complete description of the history of the world up to the time of the coin flip, together with the laws of nature, imply how the coin falls. Consequently, in such a world, one would find only trivial propensities (each equal to one or zero) in the physical field of knowledge. This suggests that when we ask for the propensity of a coin, we do not mean its propensity in the physical field of knowledge. It is often obvious from the way the bearer of a propensity is described what field is intended. If the coin is described as “a coin” then the gambler’s field is indicated; if the coin is described by giving the Schroedinger equation for the particles making up the coin, then the physical field of knowledge would be a more natural interpretation.

7. Conclusions

Relative to Lewis’ theory of chance, my theory has two major advantages. First, my theory gives interesting chances independently of whether our world is indeterministic. Lewis’ theory does not (and I argued in Essay 1 that that was an unacceptable failing). Second, on Lewis’ account, the Principal Principle stands as an independent postulate without justification and without any guarantee that the chances he defines will satisfy it. My theory provides justification of the Principal Principle by showing how it can be derived from the definition of chance.


Compared to other types of views of chance, including actual frequentism and non-Humean accounts, my theory has the advantage that it avoids the well-known difficulties plaguing with those views.


Between them, the concepts of objective probability, chance, and propensity, as defined above, together with the notion of fields of knowledge, provide adequate resources for explicating discourse about non-subjective probabilities in a very wide range of contexts.

ESSAY III

Laws: implications from the analysis of chance
1. Introduction

This essay will explore what constraints the analysis of chance presented in Essay II places on analyses of laws of nature (denoted by the letter L in Essay II). It turns out that it is fairly easy to deduce some strong constraints on lawhood. These constraints do not define what a law is, but they do point to connections between reasonable credence and laws that can serve as rather stringent criteria for evaluating proposed accounts of laws of nature. (The notion of a law of nature used here should be understood in the sense in which the set of laws is deductively closed; so not only fundamental principles count as laws but also all their logical consequences. I will focus only on worlds that satisfy Humean Supervenience, so laws should consequently be thought of as some kind of pattern or regularity in the mosaic made up of the total distribution of local qualities throughout spacetime.)

2. The Chance-Credence Principle strengthened

A good starting point for exploring the implications of the theory of chance articulated in Essay II is the Chance-Credence Principle, which stated that:

(CCP)
Cr(A|HFOKwtLFOKw&HS) = ChFOKwt(A).

In many cases we will have a stronger constraint. It will not always be necessary to conditionalize on the whole of HFOKwt on the left hand side. 
The laws in our universe, at least, seem to satisfy a Markov condition to the effect that they take only instantaneous time-slices as “input”. That is to say, if you apply the laws to a state-description of a system at one point of time t1 then you get the same predictions as if you apply the laws to a specification of the evolution of the system during some time interval t0 < t <= t1. More generally, the time-segments that the laws “grab” might be of some thickness delta-t (I shall call delta-t the “grip” of L, “G(L)”), which will typically be finite (and might well be infinitesimal, as appears to be the case in the actual world). Let HFOKw(t-deltat, t) be a proposition that gives a complete description of all the facts in FOK that supervene on the segment of the history of w ranging from t-deltat up to and including t. We then have:

(CCP+)
Cr(A|HFOKw(t-deltat, t)LFOKw&HS) = ChFOKwt(A).

In some worlds even stronger conditions will hold; for example, in the actual world, we wouldn’t need to conditionalize on any part of HFOKw that lies outside the backward lightcone of the events that A is about (assuming there are no tachyons). For the moment, however, we will focus on CCP+.

3. Constraints on laws

Suppose w is a world whose total history can be divided into three segments, Hw(t<=t0), Hw(t0<t<=t1), and Hw(t1<t) satisfying the following conditions:

(1)
The laws L of w supervene on Hw(t<=t0).

(2)
G(L) <= t1-t0.

(3)
The laws of w do not supervene on Hw(t0<t<=t1).

(Where “FOK” has been suppressed to make the notation less cumbersome.) This gives us what we can call the Law Condition:

(LC)
Cr(A|Hw(t0<t<=t1)Lw&HS) = Cr(A|Hw(t<=t1)&(1)&(2)),

Using the CCP+, we also have:

Cr(A|Hw(t<=t1)&(1)&(2)) = Chwt(A).

These equalities express a strong condition on what can count as laws and consequently on what can count as chances. If there is a chance about a proposition A that is about Hw(t<=t1) then any reasonable credence function, conditionalized on Hw(t<=t1)&(1)&(2), must assign the same probability to A, and every reasonable credence function, conditionalized on only Hw(t0<t<=t1) and the laws of L (together with HS) must agree! In other words, the laws have to contain the sum total of the inductive lessons that can be learnt from studying w, so that when combining the laws with the segment Hw(t0<t<=t1) (and HS) one gets the same forecast about A as one would if one were to take into account every lesson and every hint and every piece of evidence contained in the total history of w up to t1. All extrapolable regularities in w (that are relevant to A) have to be accounted for in the laws of w. 


This condition does not by itself amount to a definition of laws. Let’s call any set of propositions that satisfies the above condition adequate. The set of laws for w is adequate, but not every adequate set contains only propositions that could count as laws. For example, one adequate set of propositions––which is clearly not the set of laws––is the set containing a complete specification of the history of w. It is easy to see that such a set satisfies the above condition: the left- and the right-hand side would either both be one (if A is true) or both be zero (if A is false). Another example: an adequate set is obtained if we start from what intuitively is the set of laws and restrict their domain of applicability so that they speak only about events in the final segment Hw(t1<t). Such a set would not contain the laws, since the laws of w presumably speak not only about the final segment but govern events throughout w. Satisfying the LC is thus a necessary but not a sufficient condition for being the set of laws of w.

To obtain a condition that is both necessary and sufficient we have to carry the analysis further. The two counterexamples in the last paragraph would both be ruled out if we require that the set of laws has to be as simple as possible.
 The set of propositions derived from the set of laws by restricting the scope of the laws to t > t1 has introduced an unnecessary complication and is thus less simple than the set of propositions lacking this restriction. Likewise, a set of propositions specifying every particular event in the whole history of w is hugely complicated and contains a lot of information that is not relevant to predicting events in Hw(t1<t). This suggests the idea that the set of laws in w can be characterized as the simplest adequate set for w:

Partial characterization of laws. Suppose that w is a world satisfying (1)-(3) above. Call a set X of propositions adequate for w if and only if, for any proposition A that is only about Hw(t>t1), Cr(A|Hw(t0<t<=t1)&X&HS) = Cr(A|Hw(t<=t1)&(1)&(2)). Then L is the set of laws in w if and only if L is the simplest adequate set for w.

4. An illustration

The next section will discuss the limitations of this characterization, but it may be helpful to first watch it in action in a case where it works. Let w be a world that is finite in time but otherwise very similar to what we think the actual world is like. We can then choose two points in time, t0 and t1, close to the end of the world, that will satisfy conditions (1)-(3). For example, let t1 be an hour before the end of the world, and let t0 be a unit of Planck time before t1. Let A be a proposition about some event in the last hour of w. For instance, there might be a certain atom––call it Alph––that is in an excited state one hour before the end of the world, and A might say that Alph will emit a photon within the next 20 minutes. Since w is very similar to what we think the actual world is like, there will be some number a such that all reasonable credence functions agree that Cr(A|Hw(t<=t0)) = a.

(Why? Because there is such a number in the actual world––the chance of photon-emission given by quantum physics. Since w is assumed to be very similar to the actual world, it will have the same laws. Moreover, since Hw(t<=t0) includes nearly the whole history of w, the laws in w will supervene on Hw(t<=t0). Thus, conditional on Hw(t<=t0), every reasonable credence function should assign the same credence to A.)

Therefore, if X is to be the set of laws of w, X has to be such that Cr(A|Hw(t0<t<=t1)&X&HS) = a (according to partial characterization). Since Hw(t0<t<=t1) is too small a segment of w for the laws of w to supervene on it, X should contain a proposition (or set of propositions) to the effect that the chance of an atom in Alph’s state emitting a photon within 20 minutes is a. If X contains a proposition to that effect then Cr(A|Hw(t0<t<=t1)&X&HS) = a.

(Why? Because Hw(t0<t<=t1) implies that Alph exists and is in that excited state, so conjoined with X&HS it will imply that the chance of A is a. By the CCP+, all reasonable credence functions will agree that the credence of A is a, conditional on Hw(t0<t<=t1)&X&HS.)

For analogous reasons, X has to contain propositions giving the intuitively correct chances of all the other chance-events in the final hour of w, when conjoined with Hw(t0<t<=t1)&HS.


Now, it could seem that in order for X to do this, it would suffice if w only contained propositions of the form “If such-and-such a chance setup is instantiated at time one hour before the end of the world of w then such-and-such a chance-event has such-and-such a chance of occurring in the last hour of w.” In other words, it would suffice for X to contain time-restricted versions of what we intuitively would say are the laws of w, versions that only apply to what happens in the last hour of w. And in order for X to qualify as “adequate”, this is indeed enough. But it is not enough in order for X to qualify as being the set of laws of w according to the partial characterization. For out of all the X that are adequate, only the simplest such set will qualify as the set of laws. Adequate sets X that contain the time-restricted versions of the laws will not be the simplest adequate sets, since they can all be simplified by just removing the complication of the time-restriction. A proposition of the form “If such-and-such a chance setup is instantiated in w then such-and-such a chance event has such-and-such a chance of occurring in w.” is simper than the corresponding time-restricted proposition. Thus it appears that only the set X that contains what we would intuitively think of as the laws of w will be the set that the characterization picks our as the set of laws of w.

5. The characterization is not a definition

The partial characterization of laws cannot be used as a definition of laws, since it only applies to worlds that satisfy (1)-(3). Nor is there any obvious way of extending it to cover all possible worlds. 


Let’s consider some potential cases where the characterization might break down:

1. What if the grip of the laws is bigger than t1-t0?

2. What if the world is infinite in the forward time direction and there is no point in time t0 such that the laws supervene on Hw(t<=t0)?

3. (related to #2) What if the laws “change” in the last time segment of a world, in the sense that supervening on Hw(t<=t0) there is a different set of laws than supervening on Hw, even for a t0 very near the end of the world?

4. What about worlds that aren’t temporal (i.e. that haven’t got a time dimension)?

A breakdown of type number 1 could always be avoided by choosing t0 and t1 such that the interval t1-t0 is sufficiently big.

Number 4 I don’t think is very significant. Maybe there could be laws in possible worlds that lack a time dimension, but setting them to one side would seem a reasonable simplifying assumption which can be though of as included in the supposition of Humean Supervenience, HS.

Number 2 and 3 also depict somewhat weird possibilities. In the actual world, the laws of physics seem to supervene on a small initial segment of our universe. It seems that already within the first fraction of a second, the laws of our universe have had enough time to manifest themselves, so that an infinitely smart physicist should in principle have been able to infer the laws if she were given a complete specification of everything that happened in that first snippet. Or maybe the universe had to cool down a bit more before certain types of fundamental phenomena appeared.

The obvious cure for limitation 3 would be to choose t0 and t1 closer to the end of the world, but we note that this conflicts with the preferred cure for limitation 1. In any world remotely similar to the actual world this would not cause a problem. For the laws here seem to supervene on a fairly small initial segment and their grip is instantaneous––our universe is in this sense a Markov process––so there would be a big margin of safety. We could comfortably choose t0 and t1 so as to avoid both problem 1 and 3 (as was done in the illustration above).

Terming those possible worlds for which the supposition in the definition is satisfied well-behaved worlds, one could attempt to formulate a partial definition of law by saying that: any well-behaved world contains those and only those laws that the characterization says it contains. The problem with this approach is not so much its partiality––if it holds good in any worlds that resemble the actual world, that might be good enough––but rather that the applicability conditions for such a partial definition are not readily articulated. Conditions (1)-(3) invoke the notion of law, the same notion that such a partial analysis would attempt to (partially) explicate. In a sense, one would already have to know what a law is in order to determine whether the partial definition could be used to determine the laws of a particular world. Unless one could think of a way of reformulating (1)-(3) in a way that does not rely on appealing to an intuitive notion of law, this would make the definition rather viciously circular. Therefore, the characterization should be regarded as expressing a strong constraint on explications of laws, but not as a definition what a law is.

An alternative partial characterization of laws is derived in the Appendix. It covers some cases that the characterization above doesn’t, but it has its own set of limitations. Between them, the two characterizations cover a very wide range of possibilities, yet they do not seem sufficient to provide a definition of laws.

Appendix: Another partial characterization of laws

The partial characterization of laws in the text doesn’t apply to worlds in which there is no initial segment on which the laws supervene (or at least no initial segment that leaves out a sufficiently large final segment for there to be appropriate times t0 and t1 in this final segment). To deal with some of the excluded cases, we can formulate an alternative or complementary characterization as follows: 


In the original characterization, we considered propositions A that were about a final segment Hw(t>t1) of w. The characterization said, roughly, that all credence functions must agree about the credence of all such propositions A when conditionalized on either the laws of w plus a preceding time interval, or on a certain large initial segment of w (large enough that the laws supervened on it). But let’s modify this by considering instead propositions A that are not about a final segment of w, indeed not about w at all. Let’s consider propositions A that are about a “hypothetical continuation” of the history of w. Such propositions speak of the outcomes of chance-events that do not take place in w but might take place in some possible worlds having w as an initial segment. Now, unless you are a strong believer in the meaningfulness of counterfactuals of this kind, you may not think such propositions have well-defined truth conditions. There might be no fact of the matter as to what the outcomes would have been if a world had existed longer than it did and certain chance-events had taken place in this extra piece of history. Yet, that doesn’t matter for present purposes! The fact remains that reasonable people in w, not knowing whether w will end at tend (the time when w in fact happens to end) or at some later time, can have reasonable credence functions assigning credences to propositions about chance-events predicated after tw-end. For example, you may reasonably assign a certain credence to the proposition “If there are radium atoms in the year 2067 A.D., and somebody randomly selects one such radium atom, then that atom will decay before 2068 A.D.”; and you can do this even if, unbeknownst to you, the actual world will abruptly cease to exist in 2050 A.D. 


An alternative characterization could then go as follows:

Alternative characterization of laws. Suppose a set of propositions X is such that, for any proposition A that is about a history segment HA in the hypothetical continuation “Hw(t>tend)”, the following holds: if, for all reasonable credence functions Cr, Cr(A|Hw&“w lasts at least until the end of HA.”&HS) = a then, for all reasonable Cr, Cr(A|X&Hw(t>=t0)&“w lasts at least until the end of HA.”&HS) = a. Then X is adequate. L is the set of laws in w iff L is a simplest adequate set for w.

Here t0 is chosen to be a point in time before tend such that the grip of the laws of w is less than or equal to tend - t0.


The advantage of this characterization is that might work for possible worlds where there is no initial segment, short of the entire world, that the laws supervene upon. Unfortunately it has one shortcoming not present in the original characterization: it doesn’t work for worlds that have laws that imply when the world is going to end. If X implies that the world ends at tend then Cr(X&Hw(t>=t0)&“w lasts at least until the end of HA”&HS) = 0, and hence Cr(A|X&Hw(t>=t0)&“w lasts at least until the end of HA”&HS) will be undefined. Cr(A|Hw&“w lasts at least until the end of HA”&HS) will also be undefined, since the laws of w supervene on Hw and since they imply that w ends at tend. This would entail that any X implying that the world will end at tend would be adequate. Since that would give an erroneous verdict of what a law is, the characterization would has to be prefixed by a supposition to the effect the characterization only applies to worlds whose laws do not imply when the world ends (and then X could be required not imply when the world ends). Since it appears difficult to formulate this proviso without reverting to the notion of law, this characterization faces essentially the same predicament as the one in the main body of the paper, albeit for a different set of worlds. It seems that the two characterizations taken together would work for a greater set of worlds than either individually, but there would still be exceptions.
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*** “Whose afraid of undermining?” ref

� I’m grateful to Carl Hoefer and Colin Howson for stimulating discussions of some of the ideas presented here. 


� With a negligible modification in notation for the sake of uniformity with the rest of the paper.


� Lewis uses this definition in this (1994)-paper, but at least in (1986), p. 123 he is quite explicit that the laws do not need to be regularities; truths about particular times and places can be laws.


� The New Principal Principle says your credence should be Pwt(A | Tw), which according to Bayes’ theorem is equal to � EMBED Equation.2  ���. Since the chance of Tw at t in w is 1, this expression simplifies to Pwt(A), which is equal to 50% as explained in the text.


� Note that this example is totally different from the so-called problem of undermining (Lewis 1980). None of the possible futures after toss number 995 would undermine the fifty-fifty chance of heads, and all the information you have at that point is exclusively about the past.


� This latter assumption is convenient but not necessary. If it were a priori more probable that the coin should have a propensity of less than 50% of falling heads then we could simply consider a world where out of the first 995 tosses there were 500 tails and 495 heads, instead of vice versa. The reasoning would then proceed as in the text. 


� e is the number such that 0.5+e is the expectation value of the propensity conditional on H4.


� A possible third way of responding to my counterexample would be by saying that the reasonable credence functions’ deviation from the NP in most real-world cases is not that big so let’s not make a fuss about it––a rather lame response in my opinion. The problem that Lewis discovered with his original approach––the problem of undermining––was regarded as a mortal objection, and yet it too concerned only effects that would be extremely small in most real-world cases.


� And it doesn’t seem to help (not in a straightforward way anyway) to invoke infinitesimals. (Compare � EMBED Equation.2  ��� and � EMBED Equation.2  ���. The chance of the world is the product of the chances of its constituent chance-events (assuming they are independent). One would like to say that the theory giving 70% chances to each of the actual outcomes of a denumerably infinite sequence of chance events has a better fit than one giving only 30% chances to these events. One superficial temptation might be to say that the former theory has a better fit because it gives each individual event a greater chance than the second theory. That doesn’t work. Consider that � EMBED Equation.2  ���. The chance that four independent events happen is the same as the chance that the “aggregate event” ei consisting of these four constituent events happens. So recalculating the fit of the intuitively better theory by counting the chances it gives to these complex events ei we could get the opposite result: � EMBED Equation.2  ���, where each term is now less than in the original product for the “worse” theory.)


� After writing this I find that Lewis does in fact seem to have been aware of the problem. He first defined his notion of fit in a postscript to his 1980 paper. His main purpose in that postscript is to explain how the problem of undermining destroys his suggestion for how to explicate chance. He writes: “If the histories permitted by a system formed a tree with finitely many branch points and finitely many alternatives at each point, and the system specified chance for each alternative at each branch point, then the fit between the system and a branch would be the product of these chances along that branch; and likewise, somehow, for the infinite case. (Never mind the details if, as I think, the plan won’t work anyway.)” (1980, p. 128) Since Lewis is here engaged in a sort of reductio ad absurdum, he is entitled to bracket the failure of the definition in the infinite case. However, in 1994, having solved the problem of undermining, he sets forth the same definition of fit again, this time not in the context of a reductio but as part of his definition of a law of nature that he then uses in his analysis of chance. But he seems to have forgotten about the failure in the infinite case; for there is no mention of it in the 1994 paper.


Adam Elgar (personal communication) has independently discovered this bug in Lewis’ theory.


� That is, partitions of logical space. In Jeffrey’s account, objective probabilities are limiting frequencies of subjective probabilities when these subjective probabilities are conditionalized on more and more information (i.e. are made relative to finer and finer partitions of logical space). Obviously, some information has to be excluded, for example the proposition whose probability is under consideration, since otherwise all objective probabilities would be trivially zero or one on this approach. Jeffrey does not provide any general rule for what information should be excluded. In Skyrms’ theory, the idea is that objective probabilities are those subjective probabilities that are highly resilient, in the sense of not changing much when conditionalized on further information in their domain of resiliency. The domain of resiliency plays a role analogous to the partitions in Jeffrey’s account.


� Modulo computational constraints, of course. Such constraints are not relevant here. For a discussion of the Total Evidence Requirement, see Carnap (1947).


� What about the following quantity:





Cr(A|D’&“There is some superset D1 of D’ such that PD(A) = x”&“There is some superset D2 of D’ such that PD(A) = y”),





where � EMBED Equation.2  ���? It would clearly be wrong to demand that this conditional probability be equal to x (and just as wrong to demand that it be equal to y). Does that mean that there is nothing we can say about the value of such a conditional probability? Not quite. At least it seems reasonable to require that it has a value that is not outside the interval between (and including) x and y, i.e. that it is equal to ax + (1–a)y, for some number a in the unit interval. One could also be tempted to reason that because of the seemingly perfect symmetry, we should require that a=0.5. That would be a mistake! Consider the case where x=0.5 and y=1. I would conclude that D’ presumably contains the proposition A itself or something that implies it. I would therefore rather set my conditional credence equal to 1 than to 0.75.


� Nonsensical, that is to say, when we are talking about the toy worlds I have been discussing. It is not necessarily nonsensical to speak of the chance that our universe should turn out to be the way it did. For example, in chaotic inflationary cosmology, innumerous universes such as ours would be generated by a random process. Within such a context it may well make perfectly good sense to assign a chance to a specific universe turning out the way it does. Here we have embedded the “brute fact” of our universe within a richer theoretical and ontological framework. That also means that there will be plenty of facts that can make up the domain for the chance in question over and above those facts that are strictly about this universe. Hence the problem referred to in the text will not obtain, and there is no longer an obstacle to the analysis producing the required chance.


� Like Lewis’, my analysis will hold only in a subset of all possible worlds, if worlds with do not satisfy Humean Supervenience are possible. If my analysis works, it will show that chances do not presuppose the existence of irreducible modal facts or propensities or suchlike. 


� The reason why we do not include the total history up to t but only the part of it that is captured by propositions in the designated field of knowledge is that the fundamental laws of the world might well supervene on a sufficiently large initial segment of its total history. Including all the facts about such a segment would let in by the back door the information that we tried to block. If you have the fundamental laws of a world together with all the facts about an initial segment then you could deduce what will happen later in that world if it is deterministic. It would follow that there would only be trivial chances in a deterministic world––precicely what we sought to avoid!


	Another variation that is also not recommended is the following: Suppose we had the laws being the fundamental laws of a world, i.e. the laws relative to the total set of facts about a world (by contrast to what I am proposing: using only the laws relative to the set of facts about a world that falls within a field of knowledge). One could think that so long as the other component of the domains of chances were suitably fuzzed (i.e. so long as we included only those facts about the initial segment of the world that fall within a field of knowledge) then it wouldn’t matter if we used the fundamental laws of the world. One reason why this is not advisable is that it would unnecessarily make a problematic assumption about reductionism: it would presuppose that from given macro-level description of the initial segment we could infer a probability distribution over possible micro-level descriptions––we would have to do that in order to apply the fundamental laws to the initial conditions specified by the macro-level description of the initial segment. For example, from the proposition “A fair coin has been tossed.”, we would have to be able to infer a probability distribution over the various possible micro-states of the coin, the hand of the person doing the tossing, and the surrounding environment. The approach I advocate steers clear of this problem.


� We shall see in Essay III how the CCP can be further strengthened.


� One other theory of chance that is in many ways similar to mine is the one presented in the excellent first chapter of Brian Skyrms’ Causal Necessity (1980). A detailed comparison between Skyrms’ theory and mine is beyond the scope of the present essay, but for those familiar with Skyrms’ theory I would point to the following areas where I see an advantage of the theory presented here: I allow that there can be many different reasonable credence functions whereas Skyrms’ exposition seems to implicitly presuppose that all reasonable credence functions agree. By allowing for differing reasonable credence functions, the notion of objective probability emerges naturally as being a property of those probability assignments where all reasonable credence functions agree. I also say something about what sort of credence functions count as reasonable; Skyrms’ doesn’t. Furthermore, Skyrms’ doesn’t define any notion analogous to what I have called objective probabilities. He does say that “Objective probabilities are gotten from epistemic probabilities [i.e. reasonable credence functions] by conditionalizing out.” (p. 22, emphasis in the original). However, this cannot serve as a definition since it presupposes that such things as the probability of a coin falling heads given that it has a certain bias is defined; but the notion of bias is itself exactly what one wants to see defined, and it would be circular in this context to define it in terms of objective probability. Skyrms defines a notion of propensity, which is somewhat analogous to what I have called “chance”; he doesn’t have anything that corresponds to the notion of propensity as defined here, although that does seem to be a very useful concept. What he calls propensity must be highly “resilient”, but he doesn’t say anything in general about what sort of propositions it must be resilient over; that is to be determined by the theory which postulates these “propensities”. I am sympathetic to the idea of having the particular theories doing a lot of the specifying of what the intended scope of resiliency is; but still it is sometimes nice to be able to say something general about what sorts of sets of proposition are scopes for scientific “propensities”. On my approach it is possible to do that, through the notion of fields of knowledge. Finally, I think that the underlying subjectivist character of the enterprise is more clearly exposed in my theory. Some people might have various misgivings about basing an analysis of chance on the notion of reasonable credence, but given that that is what one is doing, it is an advantage that it is done openly and explicitly.


� Something should be said to clarify the notion of supervenience used here. When I say that in world w, the laws L of w supervene on the initial segment Hw(t<=t0), I do not mean that there are no possible worlds that have the same initial segment but where a different set of laws holds. There might well be some possible continuation of Hw(t<=t0) such that a different set of laws would supervene on the totality of this continued history. For example, if the decay frequency of a certain kind of atom is f in w, one could imagine a much bigger world w’ with a different decay frequency f’[not=]f, that contains w as a small initial fragment whose abnormal decay frequency f looks like a mere statistical fluke in the bigger picture presented by w’. Since the actual decay frequency will typically have to be at least approximately respected by the laws of w and w’, respectively (in order for laws to constrain reasonable credence in acordance with the CCP), the laws in w’ would presumably be different than in w. So if that were what was meant here, there would be few if any worlds that would satisfy (1)-(3). However, what I mean when I say that the laws of w supervene on an initial segment Hw(t<=t0) is instead the following: the laws in the world whose total history is Hw(t<=t0) are the same as the laws in the world w. This much weaker all that (1) requires. (And similarly for (3)).


� Compare this to Lewis’ best-system analysis. Simplicity, remember, was to be one of the defining criteria for the best system. 


� Some might think that only fundamental principles, and not all of their logical implications, should be called laws. If one doesn’t like the fact that this definition would make all theorems of X laws, one could modify it by saying that only the (non-logical) axioms in the simplest axiomatization of L are laws.


� Cp. Jenann (1996) and [***”Whose afraid of undermining” ref?]


� All the fundamental force fields had broken out of the initial symmetry very early one, however, so it would appear that they had manifested themselves enough within a fraction of a second.
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